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Abstract: Few object detection methods exist which can resolve small objects (<20 pixels) from
complex static backgrounds without significant computational expense. A framework capable of
meeting these needs which reverses the steps in classic edge detection methods using the Canny
filter for edge detection is presented here. Sample images taken from sequential frames of video
footage were processed by subtraction, thresholding, Sobel edge detection, Gaussian blurring, and
Zhang–Suen edge thinning to identify objects which have moved between the two frames. The results
of this method show distinct contours applicable to object tracking algorithms with minimal “false
positive” noise. This framework may be used with other edge detection methods to produce robust,
low-overhead object tracking methods.

Keywords: edge detection; object detection; video processing

1. Introduction

As image capturing hardware and storage capabilities improve, more and more digital
imagery is being captured as video. Classic methods of edge detection based on first and
second-derivative kernel operations, such as the Roberts [1], Sobel [2,3], Marr-Hildreth [4],
and Haralick [5] techniques are still frequently used as the basis for modern static image
edge detection due to the speed and quality of the output [6]. Perhaps one of the the most
well-known and actively used techniques in the field of edge detection in computer vision
is the Canny edge detector [7]. Briefly, this classic method detects edges by taking a de-
noised grayscale image, finding the gradient intensities, suppressing spurious non-maxima,
finding the dual-threshold of the result, and edge tracking by hysteresis. While the Canny
technique has been improved many times over the years, including improving the blurring
operator [8], using Otsu’s method for thresholding [9], and using advanced thinning
techniques [10], most improvements on the Canny filter have focused on static images
as opposed to video streams. Currently, many optical flow, object tracking, and motion
detection algorithms are concerned with corner matching methods [11] that tend to require
intensive computation [12], customized deep learning algorithms [13], and/or dedicated
hardware [14]. As an alternative we offer a naive approach suitable for detecting moving
objects that employs computationally inexpensive methods based on a reversal of classic
edge detection techniques.

2. Methods

In this communication, we demonstrate edge detection reversal using the general steps
from a single edge detection scheme, the Canny edge detector, and compare the results to
simple object detection by image difference. Sample videos consisted of “moonwatching”
footage wherein nocturnally migrating birds were filmed crossing in front of the moon as
viewed through a spotting scope [15]. In an effort to present examples which are accessible
to users with a background in applications, rather than exclusively those in computer

J. Imaging 2021, 7, 77. https://doi.org/10.3390/jimaging7050077 https://www.mdpi.com/journal/jimaging

https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-3681-4810
https://orcid.org/0000-0003-3453-2008
https://doi.org/10.3390/jimaging7050077
https://doi.org/10.3390/jimaging7050077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jimaging7050077
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging7050077?type=check_update&version=2


J. Imaging 2021, 7, 77 2 of 10

science, all methods described here use functions available from the standard OpenCV and
OpenCV-contrib libraries [16] in multiple programming languages.

UnCanny Filter

The novel method, which we have dubbed the UnCanny filter, attempts to find dif-
ferences in temporally adjacent images by applying the steps used in the Canny filter for
edge detection in reverse order across two frames. The order reversal from the Canny filter
suppresses spurious non-maxima prior to the execution of gradient intensities, and thereby
reduces the impact of background noise prior to gradient operations arising from atmo-
spheric effects or compression artifacts. The difference in the current frame of a video
(Mn) and the previous frame (Mn−1) are passed through OpenCV’s adaptiveThresh with
Gaussian filtering to produce a blurred image (G(M′x, M′y)) which then is binarized by the
Niblack method (M′′) [17],

M′ = Mn − Mn−1 (1)

M′′ = G(M′x, M′y)− G(M′x, M′y) + 255 (2)

The result is separated by anisotropic Sobel kernel operations in the horizontal and
vertical directions, and each of these Sobel outputs is squared and added prior to taking
the square root of the result:

Sx =

1 0 −1
2 0 −2
1 0 −1

× M′′, Sy =

 1 2 1
0 0 0
−1 −2 −1

× M′′

S′ =
√

S2
x + S2

y

(3)

The scaled matrix was blurred again to reduce noise and simplified by the Zhang–Suen
thinning algorithm (represented here as an operator (Z)) [18].

U = Z
(
GS′

)
(4)

The output, already binary from the thinning step, may undergo contour detection
steps. It should be noted that both the Sobel operations and linear distance steps shift the
edges of the thinned contour away from the original object’s location; therefore, objects
near the edge of the image may appear shifted after these detection steps.

3. Results and Discussion
3.1. Stepwise UnCanny Application to Video Frames

By applying the method to temporally adjacent frames from a video, one can identify
moving objects with a high “hit” rate. As an example, two adjacent frames from a video of
migrating bird silhouettes passing in front of the moon, cropped to 100 px2, were processed
using the UnCanny object detector; see Figure 1. Subtraction (Equation (1)) of the input
matrices Mn−1 and Mn yielded a difficult to see spot in Figure 1a. The difference image was
processed with a Gaussian blur filter and thresholded (Equation (2)) to produce a binary
image in Figure 1b. Edges of this blurred image were detected using the Sobel operation
from Equation (3) in Figure 1c. The image was again blurred for Figure 1d and skeletonized
for Figure 1e per the operations in Equation (4), producing visually distinct results.

The example images in Figure 1 were chosen and cropped to simplify the example for
demonstrative purposes. Most edge detection methods would have little trouble detecting
an object based solely on the difference between the input images represented by Figure 1a.
However, object movement against visually complex backgrounds showcases the strengths
of the UnCanny filter. In the case of the example video chosen for this demonstration, the lu-
nar background is considerably unstable compared to nearer, less complex backgrounds.
While the motion of the moon from frame-to-frame in a video may be negligible, especially
if the image is artificially stabilized, the atmospheric lensing effects are not. Localized
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turbulent changes in the atmospheric pressure and relative humidity cause minute shifts
in pixel illumination, especially in areas of sharp gradient contrast, such as near the lunar
mare in the example image, a phenomenon known as atmospheric scintillation [19,20]. The
result of these changes is that simple image differences in what appears to be a stable back-
ground become noisy to the point that the degree of blurring required to negate this noise
would obscure the moving object. In the resolution of very long-distance imagery, which
may be an edge-case example, the presence of atmospheric scintillation approximates
compression artifacts in some video.

Figure 1. This image demonstrates a stepwise operation of the UnCanny filter comparing the current
frame Mn to the previous frame Mn−1. The images were (a) subtracted, (b) thresholded and blurred,
(c) distanced after Sobel operation, (d) blurred, and (e) thinned.

3.2. Comparison to Raw Frame Differences

The UnCanny filter results in a much lower output of false positives, defined here as
false identifications of moving objects which do not correspond to any moving action in
the frame, compared with the raw framewise difference. Stills from the application of both
framewise subtraction (Mn − Mn−1) and the UnCanny method to single-channel video
of water dripping from a faucet are shown in Figure 2. The public domain stock footage
used here was encoded as 480 × 272 H.264 video in yuv420p color space at a bitrate of
949 kbit s−1, a compressed format [21]. The water drop in this video is larger than the small
objects detected in the previous example, demonstrating the UnCanny method’s capability
extends beyond the extremely small. While the background in this video was stable and
subject to constant lighting, by running a simple pixel difference across frames of the video,
a large amount of shot noise was revealed. This simple image differencing approach is
unacceptable for moving object detection. Treatment of the same frames with the UnCanny
method results in a distinct droplet contour and no visual noise or false positives from the
static portions of the frame.

While it is obvious that a simple image difference is unacceptable for moving object
detection, it illustrates the gulf between rudimentary approaches and the UnCanny method.
By analyzing the entirety of the sample video (34.46 s duration) and recording the sizes
of all detected contours by minimum bounding radius for both the framewise difference
and UnCanny methods, we illustrate the increase in object detectability. Figure 3 depicts a
normalized histogram of contour radii with a bin size of 1 px. Application of the UnCanny
method reduces the number of contours detected in the video by more than 2200×. Such a
large reduction in results provides performance improvements to downstream calculations.
Moreover, since most of the contour results ignored by the UnCanny method were due
to shot noise, the radial size proportion in the results shift to higher values, which are
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more likely to correspond to positive moving object detection “hits.” While the framewise
difference likely detected these same “hits,” these positive results were diluted by the
extreme number of false positives.

Figure 2. A wideo of water drops leaking from a faucet was processed with both a raw framewise
difference and the UnCanny method. The leftmost image labeled Mn shows the most recent frame of
the video, using an 8-bit single-channel output. The middle image labeled “Frame Difference” visually
depicts the results of a framewise subtraction and scaling of frames Mn and Mn−1. The rightmost image
is the output of the UnCanny method. In all images, a single droplet was seen falling from the faucet;
however, the UnCanny method results shows only the movement of the drop, without shot noise.
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Figure 3. This is a normalized histogram of contour radii detected in the dripping faucet video. Bins
were set at 1 px width. The simple framewise difference method reported 2,374,948 contours, while
the UnCanny method reported 1061 contours over 34.46 s of input video. The proportion skews
toward larger radii in the UnCanny filter, likely due to the high levels of visual noise or false positives
in the simple framewise difference diluting “hits.”

3.3. Edge Detection Necessity

The use of image blurring and contour thinning techniques minimizes the impacts of
background noise from the input images, but it cannot do so without edge detection as
well. A 590.08 s section of compressed H.264 video in yuv420p color space with a bitrate
of 884 kbit s−1 of a nocturnal bird migration was cropped to a 500 px2 region of interest
from 1920 × 1080 input. Figure 4 demonstrates this necessity by showing the results of the
novel UnCanny object detector without including the edge detection step (Equation (3)) in
a video frame of the previous bird silhouette further along its transit. While the complete
UnCanny result shows a single area of white on the black background, indicating the
previous position of the bird silhouette in frame Mn−1, the result without the benefit of
edge detection included noisy speckles along the edges of the prominent lunar mare.
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Figure 4. Performing edge detection is necessary for object detection on a complicated background.
The image of the bird silhouette in front of the moon in the original image has been processed
through the UnCanny detector without and with the Sobel edge detection steps. Excluding edge
detection from the process produces an image with many errors generated by slight differences in
the background between input images Mn−1 and Mn.

Similarly to the comparison with raw framewise difference in Section 3.2, the dis-
tribution of contour radii in the result images skews to larger contours when using the
UnCanny method. A normalized histogram of contour radii with bins set at 1 px width
(Figure 5) reports a significant reduction (30×) of unique contours in the UnCanny results
compared to the same analysis without edge detection. The bulk of the extra contours have
a bounding radius of <1 px, suggesting that they were false positives, smaller than the
actual bird.

3.4. Limitations and Shortcomings

There are certain conditions that, when met, cause the UnCanny method to perform
poorly. Video of a typewriter mechanism in Figure 6 demonstrates one instance of such
a failure. In this H.264 video in yuv420p color space, out-of-frame keys are pressed on a
mechanical typewriter, and video shows the mechanism of strikers hitting the platen as
the ribbon carrier progresses [22]. During some frames, the ribbon carrier is still while
the striker moves, generating a “hit,” identifying the moving region of the frame. In other
frames, the ribbon carrier progresses the type guide, causing the UnCanny filter to identify
this motion as well as the motion of the striker. When these events occur simultaneously the
stationary portions of the typewriter vibrate slightly as the carrier moves, and the UnCanny
filter erroneously reports that a large amount of the frame is in motion. This phenomenon
is not observed using methods excluding edge detection.

This behavior occurs due to the enhancement of the edges during edge detection.
By observing the output prior to the edge thinning step in both the simplified and UnCanny
methods presented in Figure 7, the cause becomes clear. The Sobel operator here enhances
the edges of the difference between frame Mn and frame Mn−1, causing them to appear
highlighted in Figure 7. In the method which does not include the Sobel operation, labeled
“Blur+Thin Only” here, these minute vibrations of the background strikers are not as
pronounced. Thus, when this intermediate frame is stage is processed by edge thinning,
the entirety of the thick regions are included.

In practice, this means that the UnCanny method is suitable for complex but unmoving
backgrounds. The steps reported in this demonstration of edge detection reversal do not
include a robust background subtraction [23]. While several strong background subtraction
algorithms exist within the OpenCV framework used for this work, including Gaussian
Mixture Models (GMM) [24], improved GMMs [25], and Gale–Shapley matching [26],
these were not included in the UnCanny filter. As the work presented here is intended as
an application demonstration of edge detection to sequential video rather than as a report
of a single technique, these methods were omitted for the sake of demonstrative simplicity.
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Figure 5. This is a normalized histogram of contour radii detected in the nocturnal bird migration
video. Bins were set at 1 px width. Image processing including blurring, subtraction, and thinning
steps, but excluding edge detection reported 1536 contours. The UnCanny method, which includes
the edge detection step, reported 51 contours over 34.46 s of the same input video. The proportion
skews toward larger radii in the UnCanny filter, likely due to the high levels of visual noise in the
reduced method, diluting “hits.”

Figure 6. This figure shows examples of correct and incorrect motion identification by the UnCanny
filter due to background vibration. In the correct example, the UnCanny method without edge
detection (“Blur+Thin Only”) and with edge detection identify similar regions where the striker
of the typewriter is moving. In the incorrect example, vibrations caused by the ribbon carrier
progression (the blurred cylinders in the bottom of each input image) cause the UnCanny filter to
report that the entire set of at-rest strikers is moving, rather than the single striker in motion near
the center.
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Figure 7. The cause of the previous incorrect detection by the UnCanny filter can be seen by
observing an intermediate frame from the computer vision process. Depicted are the steps of the
simplified “Blur+Thin Only” method and the UnCanny method prior to applying the edge thinning
step. The Sobel edge detection step, only present in the UnCanny method, has made the strikers
appear far more intense. This over-intensity due to minute vibrations was propagated to the final
reported image.

3.5. Tracking Object Motion

Applying the UnCanny method to sequential frames of moving imagery allows for
object tracking. In a sample video encoded in H.264 in yuv420p color space of a man
flinching as a warplane flies above his head, we can illustrate these tracks [27]. Each frame
was processed by the UnCanny filter, and the detected object contours were overlaid in
sequential color. The result shown in Figure 8 depicts four moving regions. The first is the
warplane approaching the man and flying overhead. The second is the outline of the man
as he flinches during the flyover. The third is the shadow of the warplane on the grass.
Finally, the fourth region is the horizon line which shifts slightly due to the vibration of the
camera in the wake of the low-flying plane.

Figure 8. A video of a man ducking as a World War II era Spitfire warplane flies close overhead
demonstrates the object tracking capabilities of the UnCanny method. A few frames of the video
sequence are shown first to demonstrate the action and motion in the video. The colorful image
below the action sequence reports the contours discovered by the UnCanny filter layered sequentially
in color gradient. The action in the video generates distinct shapes related to the objects in motion,
including the plane, the flinching man, the shadow of the plane, and the horizon as air currents from
the plane disturb the camera.
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The individual regions of interest in this image may be tracked separately using
the output from the UnCanny method. By isolating a region of the frames featuring
the flinching man, we see this demonstrated in Figure 9. The rightmost portion of this
figure shows the shift in center of mass of the largest contour on the cropped frame.
The total vector of motion across these points trends downwards as the man flinches.
Other techniques may be used at this point to determine motion more precisely, such as
object pose matching [28,29] or partially supervised pattern recognition [30,31].

Figure 9. By focusing on regions of interest in the video of the Spitfire flyby, we can track the actions
of individual components. Here, most of the frame has been cropped, leaving only the scared reporter
flinching as the plane flies above. As mentioned in Figure 8, the UnCanny filter determines the
motion as outlines of the actor. By calculating the center of mass of these outlines, we can determine
the movement vector. In the rightmost image, the centroids from the center image are shown as
connected lines, demonstrating this movement vector visually.

3.6. Computational Efficiency

To demonstrate the computational efficiency of the UnCanny filter, a comparison
was run between it and another well-known method, Lucas–Kanade optical flow. Video
processing ran on approximately three-million frames of video using hardware with an
Intel Core i7-7500U 2.70 GHz “Kaby Lake” processor to yield relative computational time
expenditure. Each object tracking method was run sequentially on a single processor
thread, and frame acquisition time was not measured. For comparison, a simple differ-
encing operation was executed which applied a Laplacian gradient to input frames and
took the difference of the binarized result. Laplacian matrices used were of the same
size as the Sobel matrices applied in the UnCanny filter The UnCanny filter used 1.48×
computational time as the Laplacian gradient, while Lucas–Kanade optical flow used 8.06×
computation time. While object detection methods and complex optical flow methods
are not directly comparable from a theoretical standpoint, the time comparison against a
frequently employed method serves to demonstrate the relative quickness of the UnCanny
filter. It must be noted that computation time is not a reliable measure of process efficiency,
quantity of output, or “usefulness”; and the efficiency calculated here purely demonstrates
the reduced computational complexity of the UnCanny method compared with other
well-known methods.
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4. Conclusions

As video recording and storage capabilities increase, and as the demand for computer
vision applications for these videos likewise increases, it is worth adapting classic edge-
detection methods to address these advances. Our framework is capable of object detection
with fewer false positives at minimal computational expense. By reversing the techniques
from conceptually-simple edge detection methods, such as the Canny filter, it is possible to
detect differences between sequential images with greater accuracy than raw subtraction.
Although for the sake of brevity, this paper only demonstrated the reversal of the Canny
filter, the higher-level concept of reversing edge detection for framewise analysis of video
would benefit from further exploration. Many more edge detection methods for static
images exist, and many more improvements have been made on each since their inception.
Each of these holds potential for facile object detection with low computational overhead.
Furthermore, none of the methods presented here require advanced computer program-
ming to implement, because each step is possible within the user-accessible OpenCV code
base. The initial application of this method was limited in scope, and the authors en-
courage computer vision experts to expand upon this framework in other contexts where
moving-object detection is required under the constraints of low-cost video analysis.
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