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Synopsis Quantification of nocturnal migration of birds through moon watching is a technique ripe for modernization with
superior computational power. In this paper, collected by a motorized telescope mount was data analyzed using both video
observations by trained observers and modernized approaches using computer vision. The more advanced data extraction
used the OpenCV library of computer vision tools to identify bird silhouettes by means of image stabilization and background
subtraction. The silhouettes were sanitized and analyzed in sequence to produce stacked relationships between temporally
close contours, discriminating birds from noise based on the assumption that birds migrate in stable paths. The flight ceiling of
the birds was determined by extracting relevant correlation coefficient data from doppler radar co-located with the LunAero
instrument in Norman, OK, USA using a method with low-computational overhead. The bird paths and flight ceiling were
combined with lunar ephemera to provide input for the original method used for nocturnal migration quantification as well as
an enhanced version of the same method with more advanced computational tools. We found that the manual quantification
of migration activity detected 16,300 birds/km �h heading northwest from 110◦, whereas the automated analysis reported a
density of 43,794 birds/km �h heading northwest from 106.67◦. Hence, there was agreement with regard to flight direction,
but the automated method overestimated migration density by approximately three times. The reasons for the discrepancy
between flight path detection appeared to be due to a substantial amount of noise in the video data as well as a tendency for the
computer vision analysis to split single flight paths into two or more segments. The authors discuss ongoing innovations aimed
at addressing these methodological challenges.

Introduction
The annual cycle of bird migration is one of largest re-
distributions of biomass on the planet (Somveille et al.
2015; Møller and Szép 2011). However, it is difficult to
give a precise estimate of the extent of aerial migra-
tion, leading to one of the grand challenges in migra-
tion ecology: “How many and which animals are aeri-
ally migrating?” One means of addressing this chal-
lenge is an observational method known as “moon-
watching.”

Moonwatching was originally described to academic
literature by W. E. D. Scott in 1881 accompanying an
estimate of flight altitude after a fortuitous observation

of the moon during an astronomy demonstration (Scott
1881). This observation of nocturnal migration was a
notable demonstration of the “how” question implic-
itly posed by confirmation of bird migration by Scott’s
contemporaries (Richter and Bick 2018; Jenner 1824).
A review of various reported observations of nocturnal
migration from that era are historical summarized in a
short paper by Fredric Carpenter (Carpenter 1906). The
technique of ornithological moon watching became ad-
vanced over time, culminating in codified mathematics
to ascertain flight direction and estimation of nightly
counts detailed by George H. Lowery (Lowery 1951)
and practically assessed by Ian C. T. Nesbit (Nisbet
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1086 W. T. Honeycutt and E. S. Bridge

1959). However, the idea of staying up all night to watch
birds quickly faded from prominence as radar-based
methods of quantifying bird migration were intro-
duced, which correlated the data from each tool (Nisbet
1963).

Early operators of radar stations observed unex-
pected echoes dubbed “angels” (Gould 1947), which
went unreported until 1945 due to the wartime secrecy
surrounding radar (Lack and Varley 1945; Harper and
Lack 1958). As the technology was refined, radar has be-
come one of the most important tools to study avian
migration (Chilson et al. 2011), ostensibly producing
more quantitative data in a single night than an or-
nithologically minded astronomer might produce in a
whole season. However, radar studies do not give the
whole picture. Environmental factors such as terrain,
foliage, and local weather can influence the echoed sig-
nals (Chilson et al. 2011; O’Neal et al. 2010). While
previous studies have found a significant correlation
between radar echoes associated with birds and tra-
ditional observations, they also report notable varia-
tions in the data (Gauthreaux 1970; Farnsworth et al.
2004; Komenda-Zehnder et al. 2010). Advances in radar
analysis technology for biological backscatter (bioscat-
ter) have led to improved detection methods in recent
years (Bachmann and Zrnić 2007; Zaugg et al. 2008;
Lakshmanan et al. 2015), but the techniques still rely
heavily on a priori knowledge such as roost locations
and migration pathways (Russell et al. 1998; Winkler
2006). Importantly, weather radar alone does not al-
low for inferences about species identification or social
behavior, as all aerial biomass is detected as a summa-
tion of reflected radio waves from different air volumes.
Other radar technologies such as marine and track-
ing radar are able to resolve some of these behaviors,
but they are often prohibitively expensive. Lunar ob-
servation of nocturnal migration has been correlated
with narrow-beam radar data, demonstrating the use-
fulness of lunar observation within reasonable limita-
tions for ground-truthing (Liechti et al. 1995). Liechti
et al. note that lunar observation of nocturnal migra-
tion is a cost-effective technique which can be deployed
on a large scale, although they also point out that hu-
man observers often fail to observe many of the birds
detected by radar. Yet, lunar observations provide more
granular detail than observed by other techniques, pro-
viding information on flight grouping, behaviors, and
limited genus-level identification. Early pioneers first
recognized radar angels represented groups of birds
rather than individuals Nisbet (1963). Visual observa-
tions provide insight into the number and nature of
birds flying in groups greater than achieved by any
other method, and there remains much to be learned
about the number, type, how, and when birds form these

groups that can only be learned through direct observa-
tion.

We recently described a hardware platform
for moonwatching, which we refer to as “Lu-
nAero” (Honeycutt et al. 2020). In leiu of using a
commercial telescope system with a motorized mount,
we developed LunAero to be a low-cost, open source
device that might encourage participation by citizen
scientists and bird enthusiasts. The video footage
collected for the current study was from one of our
preliminary LunAero designs that featured a Raspberry
Pi computer equipped with an inexpensive camera
module mounted to a spotting scope. The computer
used simple machine vision techniques to track the
position of the moon in the video frame while con-
trolling a motorized mount for the spotting scope
to maintain a full view of the moon. The computer
simultaneously recorded video data to a portable USB
thumb drive at 30 frames per second with 1080 × 1920
pixel resolution. The video footage was subjected to
a frame-by-frame analysis which applied computer
vision to detect bird silhouettes and assemble them
across frames into bird flight paths. We compared three
combinations of detection and analysis methods: (1)
manually watched video with Lowery’s calculation
techniques, (2) birds detected by the computer vision
algorithm with Lowery’s calculation techniques, and
(3) birds detected by the computer vision algorithm
with an advanced form of projection geometry, with the
expectation that there would be marked improvements
associated with the use of modern computing.

Methods
The video footage used in the current study came from a
preliminary version of the LunAero device (Honeycutt
et al. 2020) deployed in the northern outskirts of Nor-
man, Oklahoma that collected approximately 1.5 h of
video footage on April 28, 2018 beginning at 9:00 PM
CDT using a 40x ATS 65 spotting scope (Swarovski Op-
tik, Absam, Austria). LunAero operated independently
of human intervention, including observers, during the
specified time. Three different observers were employed
to parse through this segment of video frame-by-frame
to denote every visible bird silhouette, and we regard
the summation of these observation as the “known” set
of bird flight paths from this video segment. Individ-
ual observers watched video using VLC media player
on a computer monitor consistent through all tests. The
observers were allowed to watch video as quickly or
as slowly as they required, and they were encouraged
to rewind the video to confirm observations frame-
by-frame, especially to ensure the observer noted the
first and final appearance of the silhouette. Observers
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LunAero: Bird Count Precision 1087

recorded the timestamp of each silhouette, the location
on the lunar face where the silhouette first appeared,
and a general heading. A flight path of moving silhou-
ette was noted as the viewable silhouette between first
appearance and disappearance from the lunar disk with
exceptions given for silhouettes that temporarily disap-
peared in the lunar albedo which obviously belonged to
the same bird as determined by the visual observer. Mis-
matches between observed silhouettes were confirmed
by the author, WTH, in cooperation with the original
observer to rectify the missed silhouettes. The times-
tamps of the appearance and disappearance confirmed
silhouettes were converted to frame numbers since the
start of the video for comparison to the output from the
computer vision algorithm. Based on the silhouette tim-
ings manually observed in the video, we emulated the
method outlined by Lowery to calculate the net motion
and flight density from the sample.

Computer vision video analysis

For this implementation, image processing occurs us-
ing a set of scripts written for Python3 on previously
recorded videos. The majority of the scripts functions
are called from imported OpenCV, a computer vision
framework which provides frequently used operations
in an easy-to-use format, and Numpy, a package for
vectorized operations, modules which handle the req-
uisite image processing and math, respectively (Bradski
2000; Oliphant 2006). OpenCV opens the stored video
file and reads it frame-by-frame. During the course of a
standard loop of operation, the following general steps
are performed:

(1) The extracted frame is sanitized of noise and fit to a
standard format.

(2) The program identifies objects which move with re-
spect to the background.

(3) A ring buffer acts as temporary storage for the in-
formation about these identified objects.

(4) Assuming the ring buffer is filled, object informa-
tion is compared across frames to search for pat-
terns.

(5) The loop restarts or reports that the final frame has
been processed.

In each frame cycle, OpenCV handles image-
processing steps to produce data. The code converts
each sequential frame into grayscale and blurs the moon
using a 5 × 5 Gaussian kernel, which will not obscure
small bird silhouettes; later object detection steps oper-
ate based on luminosity difference, which remains with
such minor blurring. Using the largest object detected in
the image, the code centers the moon on a black back-
ground by conic fitting (Fitzgibbon and Fisher 1995). A

Fig. 1 This image shows a composite of the steps taken to extract
contours of silhouettes from the input video. Our code converts
the original frame (a) into grayscale (b) and performs a blurring
operation (c). Using the largest contour, that of the lunar surface,
the script centers the moon to account for video stability (d).
Subtracting the surface features of the moon, only contours which
have changed between frames remain (e). By masking the
shimmering edge of the moon, we are left with a single bird
silhouette contour (f). Note that this example represents the ideal
performance

buffer running in the background keeps the most recent
images in memory, which we use to subtract everything
unchanged in the frame (KaewTraKulPong and Bow-
den 2002). This leaves bird silhouettes in motion and
any shimmering noise on the frame. Since the edge of
the moon against the sky constantly shimmers, it does
not perfectly subtract during the background removal
step. We simply draw a black halo around the edge of the
moon to omit these erroneous detection. These steps vi-
sually represented by example in Fig. 1. Details of these
steps are described in more detail in Appendix A and
archived as code at https://github.com/BlueNalgene/B
irdtracker_LunAero.

Once the image of the moon is centered and pro-
cessed within the frame, OpenCV is used to determine
the contours present. As the moon was artificially cen-
tered on a background with luminosity of 0, and the
majority of the lunar features were removed during the
background subtraction, it is trivial to determine that
the contour function should only include pixels which
have a nonzero luminosity. The contours are, there-
fore, distinct and can be interpreted by the Suzuki et al.
method (Suzuki and be 1985). Despite best efforts to
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1088 W. T. Honeycutt and E. S. Bridge

Fig. 2 Unlike the ideal example shown previously, this shows a
much more common output from the script. This image, captured
prior to the halo masking step, shows a very cluttered moon. In
this case, atmospheric scintillation caused the lunar mare to change
luminosity between the prior frames and this one. Other examples
exist where turret movement during LunAero’s tracking motion
causes a similar appearance due to shearing. Despite the high
noise, this frame represents a “hit.” The contour of a bird
silhouette hides somewhere among the other noise in this image.
Correctly identifying this silhouette is left as a challenge to the
reader to demonstrate the difficulty for naive computational
power to detect small flying objects. The correct answer is given in
Supplementary Fig. 6

minimize extraneous contours from the input, OpenCV
detects many more contours than those attributable to
bird silhouettes, as shown in Fig. 2. Instrumental vibra-
tion instability, backlash in gears introduced by low-cost
fabrication techniques, and atmospheric scintillation by
localized turbulence (Andrews et al. 1999; Osborn et al.
2015) conspire to introduce minuscule distortions near
the surface and mare features of the moon, especially
during camera slew. Computer vision cannot yet iden-
tify moving objects without a comparative frame of ref-
erence. By this, we mean that there must be some sep-
arable distinction between true and false bird silhou-
ettes in static imagery such as contour radius, definable
shape, color change, or shadowing. In the case of Lu-
nAero and moonwatching, bird silhouettes are so small
and indistinct that we are forced to rely upon inter-
frame differences for motion detection, rendering cur-
rent paradigms in machine learning based object detec-
tion useless. Instead, we must rely on specialized naive
computer vision algorithms. Attributions of and poten-
tial solutions to noisy output is subject to intense study
in computer vision; however, for the purpose of this ex-

periment, we use an easily repeatable contour detection
method provided in the OpenCV framework.

Buffer operations to detect linear motion
To distinguish contours detected by the OpenCV oper-
ation, we classified contours as “hits” if they followed a
near linear path. We based the assumption of a linear
path of all birds during migration on:

(1) narrow shape of the conic sampling window,
(2) high altitude shape of the same cone, and
(3) video capture at a rate of 30 frames per second.

Using this assumption, we exclude many erroneous
detections by computer vision: a track of detected con-
tours that forms an exaggerated “V” shape in three
frames is more likely due to the lunar surface than due to
a particularly mobile bird. True birds flying in the nar-
row conic window fly in relatively linear paths, staying
at a constant altitude and speed within the small sample.
While flapping and shape deformation caused by image
quality and pixelation make the linear travel appear im-
perfect under ideal circumstances, any deviations occur
within bounds. However, this assumption is imperfect.
The high altitude reach of the sampling cone limits the
influence of migrating insects on the collected silhou-
ettes, only those which fly very close to LunAero appear
in the video. However, since these insects fly close to the
camera, we easily observe the less stable flight patterns,
as in the case of a large beetle which wobbles across the
test video, making them easy to distinguish from birds.
Similarly, non-migrating insectivores (bats, swifts, etc.)
are also easily distinguished from the level-flying mi-
grants by their swooping paths, but only with sufficient
framerate to detect such motion. While the authors ob-
served no instances of man-made flying objects during
this study, other video segments uncommonly contain
distinct planes. Some non-birds may fly straight and
some birds may fly less than linear paths. Further work
will reveal more accurate behavioral traits which will
produce more accurate tracks, but the simplicity of the
linear flight assumption must serve for now.

The computer vision analysis and linear motion de-
tection script operated on the 1080p video segment
recorded in 2018 using the University of Oklahoma’s
(OU) Supercomputing Center for Education & Re-
search with a single Intel Xeon “Haswell” E5-2650v3 10-
core 2.3 GHz node with 32 GB RAM. During video pro-
cessing, the code records the position and bounding ra-
dius of each contour detected to a ring buffer of the lat-
est three frames, along with the frame number since the
video began recording. From these intrinsic properties
of the contour, the code calculates several derived prod-
ucts based on contours detected in a previous frame:
contour displacement (d), radial size change (�r), and
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LunAero: Bird Count Precision 1089

apparent direction (τ ). The code stacks these newly cal-
culated derived products and compares them with pre-
vious values. The details of these calculations and com-
parisons are reported in Appendix B. Only those values
deemed within tolerance bounds across three frames for
d, �r, and τ remain when the ring buffer cycles to open
a new frame. The data that remain represent likely “hits”
on bird silhouettes. As the intention of this paper fo-
cuses on the birds and their flight paths, we have opted
to eschew the traditional computer vision object detec-
tion metrics such as mean average precision (mAP) and
precision–recall (PR) curves, averting deep delves into
computer vision.

We assume birds continually exist, not blink in and
out of reality: One bird crossing the moon should pro-
duce an entry for each subsequent frame in which it ap-
pears in the frame, although we will discuss the unpleas-
ant failings of this assumption later in the paper. The
steps described stack probable hits based on data from
the previous two frames, but those steps are naive to
connections beyond three frames. Without the persis-
tent bird assumption, we find longer range geometries
between silhouette results. This assumption performs
poorly when the original silhouette detection missed a
portion of the track. This case becomes especially prob-
lematic when the luminosity of the moon appears over-
saturated, as silhouettes become lost in the brightness.
Therefore, the current persistent bird assumption re-
mains video quality dependent. The best way to ensure
high-quality output is production of high-quality input.
While well-intentioned, this maxim often fails to hold
with LunAero, as changes in the atmospheric conditions
fluctuate. A perfect scene quickly turns to an over-bright
one as the water content in the column of air between
the observer and the moon decreases. Live adjustment
of frame brightness on the LunAero hardware would
solve this problem but introduce new problems, as
brightness on inexpensive rolling shutter style cameras
directly relates to shutter speed, which would cause the
bitrate and temporal precision of the video to fluctuate
with these adjustments. An ideal solution during post-
capture video analysis would use predictive placement
of silhouettes which cross the moon, allowing the code
to guess that a bird in linear motion based on the appar-
ent crossing speed and direction of the contour at the
first frame. However, such a “Kalman filter” approach
to silhouette detection becomesO

(
n3) computationally

complex, making it non-trivial for long videos.

Modernized lowery method

Co-location with KTLX weather radar
The original Lowery technique involves an estimation
of the upper limit or the “flight ceiling” for the birds ob-

served. This estimation amounted to a reasoned guess
by the observer. We may reduce the error associated
with this approximation by establishing a more precise
flight ceiling based on radar observation of bioscatter.

Conveniently, Norman, OK, sits within the radius of
the KTLX weather radar installation, which covers al-
titudes below 1 km (Maddox et al. 2002). Calculation
based on radar data reveals that our field site was cov-
ered above 165 m, although since this site is the location
of the LunAero deployment, the relevant coverage in-
formation is relative to the azimuth of the moon. While
this means that the coverage is biased against detecting
takeoff and touchdown of migrants, it is sufficient to de-
termine cruising altitudes at this deployment (Horton
et al. 2019).

To do so, we accessed Level 2 weather radar data
from Next Generation Weather Radar (NEXRAD)
on Amazon Web Services (https://registry.opendata.
aws/noaa-nexrad) and extracted the correlation co-
efficient (ρhv) data product for 10 radar scans that
correspond to the time of video data collection and the
air volume surrounding the field site out to a radius
of 300 km. The correlation coefficient measurement
assesses the “sameness” of signals within a range gate
as detected by the dual-polarized beams of the current
NEXRAD installations. Biological entities typically
have lower correlation coefficient values than more
uniform non-biological objects like rain drops. To
facilitate acquisition of average flight altitudes, a GUI
implementation was developed using the Python ARM
Radar Toolkit to perform a visual check of the rhohv
band pass filter and geographic areas excluded as
ground clutter, as seen in Fig. 3. We selected band pass
values for ρhv and radial distance from the instrument
r to sample data outside of the ground clutter region
and with heterogeneous echo signatures, sampling the
entire airspace covered by KTLX outside the ground
clutter. Using additional animation of the ρhv radar
data around this time point, we graphically observed
the relative motion of radar signals visually distinguish
weather phenomena from aerial migrants. We saved
the average radar gate altitude h̄ associated with data
retained from the filters as our flight altitude (Fig. 4).

Elliptical projection and flight paths
The method of projection of silhouettes onto a geodesic
system adheres to many of the same steps as those es-
tablished by Lowery. The “great cone,” which points its
apex toward the observer and base toward the moon,
when flattened, provides the heading of birds passing
through that section of the night sky. Modern compu-
tational power allows us to skip many of the requisite
shortcuts in the original Lowery method, notably the
“clock face” reckoning of motion which limits the pre-
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1090 W. T. Honeycutt and E. S. Bridge

Fig. 3 This figure depicts one example of the Python GUI developed to extract radar echoes with low correlation coefficients (ρhv) with
radial exclusion zones to prevent collection of ground clutter. In this example, the ρhv data product from a Level 2 radar archive from
KTLX installation appears on the left. The plot with circles, which appear on the right of the graphic, depicts a visualization of the script’s
output. Sliders on the extreme left of the image allow the user to adjust the band pass filter for the values of ρhv from the original data. In
this example, we include 0 < ρhv ≤0.21. Similarly, the sliders on the bottom of the screen allow the user to adjust the exclusion radii r of
the outer and inner circles. In this example, we include 87830.69 < r ≤ 300,000. The combination of these two band pass filters for ρhv

and r produces the grayscale points between the colorful exclusion radii on the rightmost plot, respectively. The average (with standard
deviation) and median height are updated to the user on the top left of the figure in purposefully small text to prevent focusing on error
reduction for band pass filter selection. Points from the original data set have been superficially labeled noting (a) points with high ρhv

values, which appear to be moving westward during radar plot animation, and (b) points with low ρhv near the edge of the ground clutter
radius which appear to be moving northward during animation. Pressing the “record” button records data to an output file; “skip” moves
to the next entry without recording the output

cision of input silhouette tracks to ±15◦ . Similarly, our
computational power allows us to process data recorded
on nights farther from the full moon phase. The same
circular moon assumptions made by Lowery still apply
during periods where the fullness of the moon exceeds
the resolving power of the telescope, such as the night of
video we analyze in this paper. As this part of the tech-
nique is not essential to the data at hand, we explore it
more fully in Appendix C.

For a circular moon, we require the observation time
(t), the average radius of the moon (rmoon), and the
topocentric location of the observer (latitude, longitude,
elevation). Using these inputs, the Python package as-
tropy automatically calculates the lunar position relative
to the observer using ephemera from the Jet Propulsion
Laboratory (Astropy Collaboration et al. 2013, 2018;
Rhodes et al. 2019), importantly these include altitude
(alt), azimuth (az), and the distance to the moon from
the observer dmoon. The right, circular cone pointing its
apex from the observer to the moon has a slant length

of

� = arctan
dmoon

rmoon
, (1)

which yields an elliptical shape relative to the atmo-
sphere with an eccentricity

ecc = sin alt
sin �

. (2)

The distance from the observer to the center of the el-
lipse representing the average flight altitude of birds
from radar observation is found by

d = h
tan alt

, (3)

which we must convert to an elliptical projection. This
project has a semi-minor axis equal to the radius of our
circular spot at flight altitude

rmin= d
tan alt

(4)
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LunAero: Bird Count Precision 1091

Fig. 4 The average flight altitude on the night of April 28, 2018
from midnight UTC as calculated by the method outlined in the
section plotted with interpolation between scans every 10 minutes
shows the increasing altitude of bioscatter from KTLX as the night
progresses. This example plot was generated using the Python
script to filter radar gates with several values set prior to the
calculation for demonstration purposes. The vertical lines bound
the recording time of the video used in this analysis, and the
surrounding data added to provide context. In this plot, the
parameters for the band pass filters were locked at rmin

=10,000 m, rmax =300,000 m, ρhvmin = 0.1, and ρhvmax = 0.5.
Generally, the standard deviation of echo altitudes around the
mean is directly related to the observed altitude.

and the major axis found by eccentricity

rmaj=r
min×

√
1−ecc2 .

(5)

Treatment of this flattened ellipse in parallel to the
“plane” of a flat earth project similar to a gnomonic pro-
jection returns the parallel flight path of bird silhou-
ettes, which we ascribe here as η

′ to denote a deviation
from Lowery’s original projection techniques. We find
the path the bird travels as

θ = 180◦ +
(

2 ∗ arctan
tan η′ − az

cos 90◦ − alt

)
, (6)

mirroring the result relative to the topographic perspec-
tive, with the 180◦ rotational symmetry operation.

Lowery used vector representations of outputs of his
bins like those in Fig. 5b to calculate the net trend of
bird tracks or the general heading of birds in the sam-
pling window. Using the count of birds as magnitude of
vectors and the heading of the bin, we take the weighted
average of every detected bird. Lowery’s bins have un-
equal size, making it unlike a histogram. The unequal
size arises from Lowery’s handling of the elliptical pro-
jection out of necessity for computational simplicity;
by scrunching up bins near the minor axis of the pro-
jected ellipse and stretching out bins near the major
axis, Lowery avoids the challenging math required for

Fig. 5 This figure compares the granularity of the new approach to
bird tracking with the Lowery method. Both figures show a
normalized distribution of birds on with respect to compass
direction. The first figure groups the bird silhouette data in 360
equal-sized bins (each 1◦) from the new method. The Lowery
method in the second figure creates 16 unequal-sized bins rather
than the equivalent bins in the form of a polar histogram. In
addition to the lower precision due to less bins in the Lowery
method, this bin sizing also creates distinct variation in accuracy,
artificially weighting the error in favor of bins perpendicular to the
declination of the moon. Both plots use the same input data
collected by the computer vision script. The “truth” of the Lowery
plot created by human observation of the recorded video, rather
than computer vision, may be found in the authors’ previous
work (Honeycutt et al. 2020)

equal project. Lowery calculates sector centerline pro-
jected on the earth for his bins with

θ = arctan
tan (η − az)

cos Z
, (7)
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1092 W. T. Honeycutt and E. S. Bridge

where η represents the true compass heading that each
sector represents and Z represents the lunar zenith an-
gle:

Z = 180◦ − alt. (8)

We subvert the intent of this equation to solve for the
compass heading of each bird. Lowery only calculated
his method 8 times per hour for 16 bins (reflecting over
the centerline of the circular moon), but with our better
computational ability, we calculate the track for individ-
ual birds with temporal accuracy of Z and az dependent
solely on the framerate of the video using ephemeral
calculations for the moon. The enhancement increases
the precision of measurements temporally, as we report
down to the 1/30th of a second, and spatially, as the
ephemeral calculation produces more precise lunar po-
sitions. We further enhance spatial precision by flight
ceiling adjustment based on the radar altitude estimator.
We report our data as a polar histogram with traditional
compass headings using an arbitrary yet convenient 360
bins.

Our bird density estimates arise from

D = δn cos2 Z√
1 − sin2 Z cos2 α

, (9)

where δ represents a complete lunar distance angle:

δ = 2

arcsin dlunar
d

, (10)

and α represents the angle between the flight path and
the lunar position reckoned from the south such that

α = 180◦ − η + az. (11)

To minimize computational complexity, Lowery simpli-
fies δ to 220, a value with three significant figures. We
present results where the calculation of δ becomes triv-
ial due to computational ephemera, granting us greater
precision. Since we choose to not use Lowery’s η in the
modern technique, we instead calculate α from the cen-
ter line of the arbitrarily large bins in the polar coordi-
nate plane. (For our 360 bin example in Fig. 5a, the η

values become 0.5◦ , 1.5◦ , 2.5◦ , …355.5◦ .) Therefore, our
analytical design will produce results with greater pre-
cision than the original technique.

Results and discussion
The 1.5 h sample of video footage yielded a sum to-
tal of 450 birds observed (300 birds/h). These birds
mostly moved in a northwesterly direction (reck-
oned 110◦ north of east) with a total flight density
14,193 birds/km �h. The flight paths were represented
by as few as a single frame and silhouettes often ap-
peared as a single pixel in extrema. Each of the three

video observer’s results were compiled, and discrep-
ancies between listed observations were rectified as a
group. Video inspection time amounted to about 15 h
for each observer. The time required for the automated
extraction of flight paths was approximately 8 h. Hence,
the computational approach was somewhat faster than
manual analysis. However, the automated method re-
ported 1340 detected flight paths that included at least
three silhouettes across separate video frames. These
flight paths were compiled from 783,459 groups of pix-
els that were interpreted to be potential bird silhou-
ettes. The computer vision identified 663 frames con-
taining birds correctly and reported 298 as false posi-
tives. Counting contours rather than tracks, the com-
puter identified 8.45% of all frames with birds that a
human found. While this number appears low, the com-
puter correctly identified 46.6% bird tracks in the video.

The data collected by the computer vision algorithm
are summarized in Fig. 5 in the form of both a histogram
with relatively high angular precision using the mod-
ern analysis technique discussed in section and in the
form described by Lowery. When this dataset was man-
ually analyzed, we found that the net trend density (ρnet)
of migrants in the video based on Lowery’s original
method as 16,300 birds/km �h heading 110◦ reckoned
north of east. When we process the results from the
computer vision analysis performed here with the same
Lowery method, we observe ρnet as 54,700 birds/km �h
heading 107◦ reckoned north of east. Using the same
dataset but with the modern technique, we observe ρnet
as 43,794 birds/km �h heading 106.67◦ reckoned north
of east (The significant figures which we use to report
values depend on calculation techniques.)

While our automated method of quantifying migra-
tory activity seems to work well for determining the
mean flight direction, it clearly overestimates the num-
ber of flight paths detected, indicating there are short-
comings of the computer vision analysis presented here.
In addition to the evident problem of too many “false
positives” in the automated analysis output, we also see
that many of the “real” tracks observed during manual
video inspections do not appear in the computer vision
output. Moreover, it is apparent that some of the infla-
tion of the number of flight paths is due to repeated
tracks, wherein the same silhouettes are recruited into
the construction of several different flight paths. If we
sift through the tracks to remove coincident, sequential
silhouette events across frames (e.g., when one track re-
ports a silhouette moving across frames n = 1, n = 2,
and n = 3), then another track reports a silhouette on
frame n which overlaps the previous track’s values for n
= 1 and n = 2 position, we can assume that this is the
same object in motion), the track count reduces to 961.
A substantial portion of the discrepancy between the
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manual count and the automated count is due to false
flight paths that arise due to noise in the video footage.
Atmospheric scintillation problems and unstable cam-
era motion appeared to lead to thousands of pixel clus-
ters that were interpreted as potential bird silhouettes.
Given the large numbers of false silhouette detection,
the detection of false flight paths was inevitable, we saw
more than half of the tracks here as false positives. An-
other substantial source of error was due to single flight
paths being split into two. For many of the more distant
birds, their silhouettes were sometimes invisible due to
saturation by the bright background of the moon or be-
cause the birds adopted a folded-wing posture during
flight (thus reducing its visible cross section). As a result
flight paths often presented as several partial segments
that were counted as different animals. Since computa-
tional complexity increases by O

(
n3) for Kalman filters

or similar position guessing functions, it is computa-
tionally impractical to increase accuracy with this tech-
nique to correct for segmented flight paths during initial
computer vision analysis.

Conclusion
In this paper, we have explored an incremental advance-
ment in moonwatching for nocturnal migration analy-
sis based on the LunAero open-source hardware plat-
form. Our methods of collecting video in the field and
analyzing the results offers an alternative to the time-
intensive methods that preceded the widespread avail-
ability of computers. However, the automated method
clearly requires further innovation to better align the
detection of flight paths with what is apparent to
a human observer performing an exhaustive frame-
by-frame inspection of the video data. Birds, which
sometimes appear as small as a single pixel in 1080
pixel video, can be nearly indistinguishable from lu-
nar surface features, atmospheric scintillation intro-
duced noise, and motion distortion artifacts even to the
trained eyes of experienced birders. Inexpensive mo-
tors with simple gearing, opting to live center the moon
rather than using ephemeral calculation with precise
timing, and harsh backlash in laser cut gears conspire
to cause twitchy, frequent readjustment of camera po-
sitions which, in turn, appears as stretching and tearing
of frames in the video. These abnormalities in the frame
appear as an object in motion to this naive background
subtraction. In normal operation of background sub-
traction buffers for object detection, the objects tracked
by the computer vision appear much larger in the frame,
e.g., a human walking by a security camera, allowing
for simple correction techniques such as contour radius
size exclusion which we do not use due to the small size
of migrant silhouettes.

Currently, the authors toy with new strategies to over-
come the existing weakness reported here including op-
tions to composite techniques for background subtrac-
tion and contour detection into a weighted algorithm,
modified assumptions which change the sampling win-
dow of the great cone projected from the instrument
i.e., a shallow cone means small birds fly too high to
be counted, LiDAR co-location to provide a secondary
data source, and other techniques which would serve to
enhance the accuracy of LunAero data. Running a cloud
computation implementation for video data would cost
considerably less than a trained human, rendering it fea-
sible to deploy a tightly spaced array of LunAero units
at a single site to detect migrants in coordination and
analyze this greater output of raw video. Similarly, dis-
tributed LunAero deployments, e.g., co-located with all
WSR-88D in the USA or at every wind farm in a re-
gion, would produce large datasets on the widely spread
migration with the network still producing data while
some units shut down due to cloudy conditions. Prelim-
inary efforts to enhance the automated analysis method
have shown that a series of simple post-hoc filters that
take into account the number and spatial distribution
of silhouettes that comprise a flight path can eliminate
many of the false positives that result from the computer
vision analysis. We have also implemented methods that
rank the likelihood that a potential silhouette is, in fact,
produced by a bird, and theses rankings figure into dis-
cerning true flight paths from false detections. Similarly,
we have implemented filters that detect separate flight
paths that are likely to be segments of the same flight
path. Paths flagged by these filters can simply be merged
together to improve accuracy (E. Bridge, unpublished).

There is also potential for improvement through the
modification of the LunAero hardware. Careful mon-
itoring and adjustment of brightness levels can alle-
viate some of the problems associated with saturation
of silhouettes, which often renders them undetectable.
There is also room for improvement with regard to
reducing image shakiness associated with the move-
ment of the motorized turret. With gradual accelera-
tion and deceleration of the movement, later versions
of the Lunearo hardware provided better image stabil-
ity. Further improvement is possible using commercial
telescopic equipment that features more precisely engi-
neered moving parts; however, this setup would require
us to abandon our use of low-cost hardware that is easily
accessible to hobbyists and citizen scientists.

Animal welfare statement
The authors report a field study which observes wild,
free-living vertebrates in their natural environment
without interaction. No animals were captured, han-
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dled, or excessively disturbed during this remote sens-
ing experiment.
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