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Abstract
  There exist two networks that use ground-based infrared spectrometers to determine the 
abundance of trace gases in the atmosphere at various locations worldwide, each of which developed 
a separate retrieval algorithm for converting raw spectra data into processed dry-air mole 
fractions. Although these two algorithms should produce identical results, discrepancies have been 
observed between them.  In this project, I conducted a deep analysis of the structure of each retrieval 
algorithm by performing an extensive literature review and confirming my findings with the code 
itself.  I created a detailed flowchart depicting the operation of each algorithm, noting both major 
differences and key similarities between them. I also used each algorithm to analyze sample data 
collected with the University of Oklahoma’s EM27/SUN instrument.  In doing so, I observed a slight 
disparity between retrievals from the two algorithms, which worsened under nonideal conditions. 
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Introduction and Methods
 Broad scientific consensus holds that anthropogenic greenhouse gas (GHG) emissions are causing 
global climate change at an unprecedented rate (Intergovernmental Panel On Climate Change 2023). 
As such, it has become more important than ever for the scientific community to have accurate 
measures of atmospheric GHG concentrations and distribution.  Two networks, known as the Total 
Carbon Column Observing Network (TCCON) and the COllaborative Carbon Column Observing 
Network (COCCON), composed of Bruker 125HR FTS spectrometers and Bruker EM27/SUN 
spectrometers, respectively, monitor trace gases—principally carbon dioxide (CO2), methane (CH4), 
and carbon monoxide (CO)—measured as dry-air mole fractions (Wunch et al. 2011) (Frey et al. 2015). 
The retrieval algorithms used by each network to produce this information from raw data, GGG2020 
and PROFFAST, respectively, differ slightly, causing inconsistencies in final results.  Although 
relatively minor (Sha et al. 2020), these discrepancies are nonetheless problematic, as even a small 
error can hinder analysis of the minute spatial and temporal variations of GHG concentrations.  
 The literature review entailed mainly searching databases, and the flowcharts were created based 
on detailed notes on each section of the algorithm.  When collecting sample data, we used a Bruker 
EM27/SUN spectrometer and Vaisala PTB330 with Campbell-Scientific CR6 data logger software.

Results and Discussion
 My analysis of the algorithms yielded the flowcharts shown on either side.  Some of the most 
notable differences between the algorithms include the order of steps in the interferogram-to-spectra 
conversion process, the differing methods of incorporating a priori data (GGG2020’s forward model 
vs. PROFFAST’s cross-sections table), and the order in which the post-processing steps are carried 
out.out. 
 In the sample data, I observed that retrievals 
taken with GGG2020 tended to be mildly higher than 
those taken with PROFFAST.  We deployed the 
EM27/SUN on two days, March 25th and 26th, and the 
mean difference (GGG – PROFFAST) in the retrieved 
dry-air mole fraction of carbon dioxide (XCO2) was 
0.613 ppm on the 25th and 0.102 ppm on the 26th.  
 All in all, especially for the 26th, this is a 
remarkably small discrepancy considering the 
number of differences between the algorithms.  The 
difference was likely worse on the 25th due to clouds 
hindering measurements more on that day; the 
variations in solar intensity could exacerbate the 
differences between the algorithms’ methods of 
converting interferograms to spectra. 

Conclusions
 Although their structural differences can cause 
minor inconsistencies between them, GGG2020 and 
PROFFAST are both effective tools for the processing 
of EM27/SUN data.   Further analysis of the code and 
more rigorous empirical testing is needed to 
definitively relate algorithm differences to observed 
discrepancies.  
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Figure: Comparison of the dry-air mole 
fraction of carbon dioxide (XCO2) measured 
during the EM27/SUN deployment on March 
25-26 as calculated with GGG2020 (x-axis) 
and with PROFFAST (y-axis).  Identical 
retrievals would fall on the black dashed 
line.
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Abstract
  There exist two networks that use ground-based infrared spectrometers determine the abundance 
of trace gases in the atmosphere at various locations worldwide.  Each developed a separate retrieval 
algorithm for converting raw spectra data into processed dry-air mole fractions. Although these two 
algorithms should produce identical results, discrepancies have been observed between them.  In this 
project, I conducted a deep analysis of the structure of each retrieval algorithm by performing an 
extensive literature review and confirming my findings with the code itself.  Using a detailed 
flowchart explaining the operation of each algorithm, I compared common elements between them. I 
also collected sample data with the University of Oklahoma’s EM27/SUN instrument, and analyzed 
the raw data with each algorithm. I noted the bias of each method which [insert result here].

Comparison of Retrieval 
Algorithms for EM27/SUN 

Spectrometer Data
Noah A. Schneiderman1*, 

Elizabeth Spicer1, Wesley T. Honeycutt2
1: University of Oklahoma, School of Meteorology;   2: University of Oklahoma, Gallogly College of Engineering

*Presenting author; contact: noahschneiderman@ou.edu

Introduction and Methods
 Broad scientific consensus holds that anthropogenic greenhouse gas emissions are causing global 
climate change at an unprecedented rate (Intergovernmental Panel On Climate Change 2023). As 
such, it has become more important than ever for the scientific community to have accurate 
measures of atmospheric greenhouse gases’ concentrations and distribution.  Two networks, known 
as the Total Carbon Column Observing Network (TCCON) and the COllaborative Carbon Column 
Observing Network (COCCON), composed of Bruker 125HR FTS spectrometers and Bruker EM27/SUN 
spectrometers, respectively, monitor trace gases measured as dry-air mole fractions (Wunch et al. 
2011) (Frey et al. 2015). The retrieval algorithms which produce this information from the raw data 
for each network, GGG2020 and PROFFAST, respectively, differ slightly.  While the errors are 
relatively minor (Sha et al. 2020), they are nonetheless problematic, as even a small error can hinder 
analysis of the relatively minute spatial and temporal variations of greenhouse gas concentrations.  
 The literature review entailed mainly searching databases, and the flowcharts were created based 
on detailed notes on each section of the algorithm.  When collecting sample data, we used a Bruker 
EM27/SUN spectrometer and Vaisala PTB330 with Campbell-Scientific CR6 data logger software.

Results and Discussion
 My analysis of the algorithms yielded the flowcharts seen at the right.  Some of the most notable 
differences between the algorithms include the order of steps in the interferogram-to-spectra 
conversion process, the differing methods of incorporating a priori data into the fit (GGG2020’s 
forward model vs. PROFFAST’s cross-sections table), and the order in which the post-processing steps 
are carried out.

Figure 1: Comparison of the dry-air mole 
fraction of carbon dioxide (XCO2) measured during 
the EM27/SUN deployment on March 25-26 as 
calculated with GGG2020 (x-axis) and with 
PROFFAST (y-axis).  The red line represents the 
best fit between the datasets, while the green line 
represents the best-fit line for identical data (i.e., 
what the red line would look like if the algorithms 
produced identical data).

are carried out.  As for the sample data, I observed 
that [difference between GGG2020 data and 
PROFFAST data].  Possible causes of this difference 
include [potential causes of data discrepancies 
that may be observed when I process the data 
next week].

Conclusions
 Although their structural differences can cause 
mild discrepancies between them, GGG2020 and 
PROFFAST are both effective tools for the processing 
of EM27/SUN data. [brief summary of 
results/discussion, suggestions for future work if 
applicable]

Left: The University of 
Oklahoma’s EM27/SUN, shown 
operating in its enclosure.  Taken 
March 25, 2024, from the roof of 
the National Weather Center.
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  There exist two networks that use ground-based infrared spectrometers determine the abundance 
of trace gases in the atmosphere at various locations worldwide.  Each developed a separate retrieval 
algorithm for converting raw spectra data into processed dry-air mole fractions. Although these two 
algorithms should produce identical results, discrepancies have been observed between them.  In this 
project, I conducted a deep analysis of the structure of each retrieval algorithm by performing an 
extensive literature review and confirming my findings with the code itself.  Using a detailed 
flowchart explaining the operation of each algorithm, I compared common elements between them. I 
also collected sample data with the University of Oklahoma’s EM27/SUN instrument, and analyzed 
the raw data with each algorithm. I noted the bias of each method which [insert result here].
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Introduction and Methods
 Broad scientific consensus holds that anthropogenic greenhouse gas emissions are causing global 
climate change at an unprecedented rate (Intergovernmental Panel On Climate Change 2023). As 
such, it has become more important than ever for the scientific community to have accurate 
measures of atmospheric greenhouse gases’ concentrations and distribution.  Two networks, known 
as the Total Carbon Column Observing Network (TCCON) and the COllaborative Carbon Column 
Observing Network (COCCON), composed of Bruker 125HR FTS spectrometers and Bruker EM27/SUN 
spectrometers, respectively, monitor trace gases measured as dry-air mole fractions (Wunch et al. 
2011) (Frey et al. 2015). The retrieval algorithms which produce this information from the raw data 
for each network, GGG2020 and PROFFAST, respectively, differ slightly.  While the errors are 
relatively minor (Sha et al. 2020), they are nonetheless problematic, as even a small error can hinder 
analysis of the relatively minute spatial and temporal variations of greenhouse gas concentrations.  
 The literature review entailed mainly searching databases, and the flowcharts were created based 
on detailed notes on each section of the algorithm.  When collecting sample data, we used a Bruker 
EM27/SUN spectrometer and Vaisala PTB330 with Cambell-Scientific CRR6 data logger software.

Results and Discussion
 My analysis of the algorithms yielded the flowcharts seen at the right.  Some of the most notable 
differences between the algorithms include the order of steps in the interferogram-to-spectra 
conversion process, the differing methods of incorporating a priori data into the fit (GGG2020’s 
forward model vs. PROFFAST’s cross-sections table), and the order in which the post-processing steps 
are carried out.
 As for the sample data, I observed that [difference 
between GGG2020 data and PROFFAST data].  
Possible causes of this difference include [potential 
causes of data discrepancies that may be observed 
when I process the data next week].
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Figure 1: Comparison of the dry-air mole 
fraction of carbon dioxide (XCO2) measured during 
the EM27/SUN deployment on March 25-26 as 
calculated with GGG2020 (x-axis) and with 
PROFFAST (y-axis).  The red line represents the 
best fit between the datasets, while the green line 
represents the best-fit line for identical data (i.e., 
what the red line would look like if the algorithms 
produced identical data).
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