

Overview

- Water remediation remains one of the most important environmental challenges.
- Straightforward extraction of heavy metal ions provides a manageable way to purify:
 - Mine Water
 - Water near anthropogenic radionuclides
 - Nuclear plant failure
 - Warzones
 - Poisoned aquifers

55

132.9

82

Ph

207.2

92

238.0

87.62

60

144.2

90

232.0

Metal Oxide

XMO_n

- Metal oxide bonded to high surface area silica.
- Selective for heavy ions with large radius.
- X leaves and is replaced by ion exchange pathway.

Sen, A. B. & Chauhan, V. B. S. Estimation of thorium, zirconium, aluminium etc. with EDTA and back titration with ferric chloride solution using hydroxy naphthoic acids as indicators. *Fresenius' Zeitschrift für analytische Chemie* **195**, 255–256 (1963).

92

238.0

Data Analysis: Linearization

Linearized

Non-Linearized

- Advantages
 - Easy to interpret
- Disadvantages
 - Requires math trickery
 - Intrinsic deviation

- Advantages
 Direct output
- Disadvantages
 - Difficult to interpret
 - Painful curve fitting

Bloster, C. H. & Hornberger, G. M. On the Use of Linearized Langmuir Equations. Soil Sci. Soc. Am. J. 71, 1796–1806 (2007).

27 CO 58.93	Linearized	Langmuil	r Plots	
Sr		Residual Σ Squares	Pearson's r	r^2
87.62 55	Eadie-Hofstee	1.0947	0.95959	0.91092
Cs	Scratchard	0.26964	0.95959	0.91092
⁶⁰ Nd 144.2	Hanes-Woolf	11.589	0.86787	0.71794
	Lineweaver-Burke	0.54053	-0.75803	0.51383
⁸² Ph		Residual Σ Squares	Pearson's r	r^2
207.2	Eadie-Hofstee	1.0947	0.95959	0.91092
90 Th 232.0	Scratchard	0.26964	0.95959	0.91092
	Hanes-Woolf	11.589	0.86787	0.71794
92 I I	Lineweaver-Burke	0.54053	-0.75803	0.51383

Pseudo-Order Kinetics

Pseudo-First Order $q_t = q_e (1 - e^{-k_1 t})$ Pseudo-Second Order $q_t = \frac{q_e^2 k_2 t}{1 - q_e k_2 t}$

Azizian, S. Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science 276, 47–52 (2004).
Ho, Y. . & McKay, G. Pseudo-second order model for sorption processes. Process Biochemistry 34, 451–465 (1999).
Ho, Y.-S. Review of second-order models for adsorption systems. Journal of Hazardous Materials 136, 681–689 (2006).
Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe. Bihang Till K. Svenska Vet.-Akad. Handlingar 24 (1898).

92

238.0

Pseudo-Second Order: Comments

Canzano, S., Iovino, P., Leone, V., Salvestrini, S. & Capasso, S. Use and Misuse of Sorption Kinetic Data: A Common Mistake that Should be Avoided. *Adsorption Science & Technology* **30**, 217–225 (2012). Zhang, J.-Z. Avoiding spurious correlation in analysis of chemical kinetic data. *Chem. Commun.* **47**, 6861–6863 (2011).

"Pseudo-Second Order" Scifinder. ACS. Accessed Apr. 4th, 2014.

Pseudo-Order Linearized Plots

27

Ratkowsky, D. A. Handbook of Nonlinear Regression Models. Statistics: Textbooks and Monographs 107 (1990).

Non-Linear Regression Residual Plots

38 Sr

232.0

92

238.0

Efficacy of Metal Oxide Adsorbant

Rel Moles Abs	
	Rate Constant
µmol/g	g/mgmin
1594	7.03E-01
346	3.09E-04
332.3	3.72E+00
788.4	5.65E-04
361.1	2.47E-01
1050	6.30E-04
1872	2.16E-04
	μmol/g 1594 346 332.3 788.4 361.1 1050 1872

Conclusions

- Metal oxide provided good uptake of heavy metals from aqueous environments.
- The metals probably deposit in single layer systems by an ion exchange mechanism.
- Non-linear models predict the relationship of time dependent data points well.
- Linearization issues outweigh usefulness of simplicity in this case.

Acknowledgements XPLOSAFE TECHNOLOGIES FOR A SAFER WORLD

Prof. Nicholas F. Materer

Prof. Allen Apblett Hayden Hamby Dr. Evgueni Kadossov

Cody Perkins Dr. Raj Pitchimani Shoaib Shaikh

Oklahoma Center for the Advancement of Science and Technology